

宇宙ガンマ線を用いた 宇宙線と星間ガスの研究

2015年7月29日 天文・天体物理夏の学校 @長野(信州・戸倉上山田温泉) 水野 恒史 (広島大学宇宙科学センター) Fermi-LAT Collaboration

導入:星間空間の構成要素,およびガンマ線による宇宙線と星間ガスの探査

- Fermi-LATによる成果1: 比較的よく理解されている事がら
- Fermi-LATによる成果2: まだ良くわかっていないこと, 今後の課題

- 星+<u>星間媒質</u>
 - 分子ガス
 - 中性原子ガス
 - 電離ガス
 - -ダスト
 - 星間光子
 - 星間磁場
 - 宇宙線

- 星は星間ガスから生まれる
- ・ 星間ガスを含む星間媒質は互いに 影響を及ぼす
- 星形成や星間現象の理解には、多 波長観測・理論研究・地上実験・ 宇宙線の直接観測などを用いた総 合的研究が必要

- ・ 星の材料, scale height~70 pc
- CO輝線などでトレースする ^{典型的に} X_{co}~2x10²⁰ cm⁻²/(K km/s)
 - "全天マップ"がない, X_{co}=N(H₂)/W_{co}の不定性

- ・ 星間ガスの主成分, scale height~200 pc
- ・21 cm線でトレースする

- ・ 星間ガスの主成分, scale height~200 pc
- ・21 cm線でトレースする

- "Warm" ionized medium (T~10⁴ K)
 - 大質量星回りのHII領域+広がった電離ガス(scale height~1 kpc). Hα線やpulsar dispersion measureでトレース
- "Hot" ionized medium (T=10⁵-10⁶ K)
 - scale height ~ 4 kpc. 軟X線や電離した重元素の吸収線でトレース

Wisconsin H α map

ROSAT 3/4 keV map

 ・ 星間分子形成の触媒, 星間ガス密度のよい指 標(ガスとよく混在)

Radio(CMB), Infrared(ダストの熱放射), Optical(星の光)

・Radio(CMB), Infrared(ダストの熱放射), Optical(星の光)

数µGの磁場が存在. 宇宙線/星間磁場/星間ガスの間でカのやりとり, 宇宙線の伝播
 _ 星間偏光(ダストの整列が起源)でトレース

Mathewson&Ford 70

- 星間空間を飛び交う相対論的高エネルギー粒子
 - 超新星残骸で作られ,星間空間を伝播
 - 星間磁場を介して星間ガスと力のやりとり,星間ガスの電離(天の川銀河の主要な構成要素)
 - 星間磁場,星間光子,星間ガスと相互作用して電磁波を出す(シンクロトロン,逆コンプトン,制動放射,核子-核子反応)

408 MHz radio map (宇宙線電子×星間磁場のシンクロトロン放射) T. Mizuno et al.

Fermi GeV gamma-ray map (宇宙線陽子×星間ガスの核子-核子反応) 13/43

- ・ 銀河円盤(宇宙線ハロー):半径~10 kpc, 厚み~4 kpc => V_{gal}~3x10⁶⁷ cm³
- 宇宙線のエネルギー密度:µ_{CR}~1 eV/cm³
- 閉じ込め時間τは~10⁷ yr ~ 3x10¹⁴ s (宇宙線中の放射性 同位体の観測から)

- P_{CR}=µ_{CR}xV_{gal}/τ ~ (5x10⁵⁵ erg)/(3x10¹⁴ s) ~ 10⁴¹ erg/s を宇宙線に与える必要

- 超新星爆発が物質に与えるエネルギー:~10⁵¹ erg
- ・ 超新星爆発の頻度: 1/30 yr ~ 1/10⁹ s
 - P_{inj}~(10⁵¹ erg)/(10⁹ s)~10⁴² erg/sの10%が宇宙線加速 に使えれば説明可能。<u>超新星起源説</u>の根拠

- 磁場による不規則な散乱
 - 拡散運動で星間空間を伝播
 - 閉じ込め領域の端から逃げ出す
- 電子は伝播中にエネルギー損失
 - 電離や放射
- ・ 陽子は核子-核子反応
 - 組成の変化、ガンマ線の放射

加速源でのスペクトル・組成に伝播中の変調を加味したものが、観測された宇宙線となる

T. Mizuno et al.

15/43

(GeVガンマ線は対生成を用いて測定)

ガンマ線に対しては銀河面もほぼ完全に透明

ガンマ線は天の川銀河の宇宙線および星間ガスを 探る強力なプローブ

- µ_{CR}~1 eV/cm³によるガンマ線放出率(主に陽子の反応)
 Q_y(>100MeV) ~ 1.6x10⁻²⁶ ph/s/sr/H-atom
 ~ 1.5x10⁻²⁸ erg/s/H-atom
- 期待されるガンマ線光度

 L_γ(>100MeV)~(M_{gas}/m_p)*Q_γ
 ~10³⁹ erg/s
 (~0.01 P_{CR})

(銀河面X線放射は10³⁸ erg/s程度) 天の川銀河はガンマ線で明るい

> GeVガンマ線により宇宙線加速器、伝播、 星間ガス分布を精度よく探査できる

- 導入:星間空間の構成要素,およびガンマ線による宇宙線と星間ガスの探査
- Fermi-LATによる成果1: 比較的よく理解されている事がら
- Fermi-LATによる成果2: まだ良くわかっていないこと, 今後の課題

- In 2FGL, 10 sources are now identified as, or associated with, SNR (# of possible association ~60)
- Hadronic scenario is usually favored to explain SED

- 宇宙線陽子(原子核)は星間ガスと衝突し、原子核反応を起こす
 原子核反応なのでガスの状態によらない
- 中性パイ中間子は直ちに光子に崩壊。質量が~140 MeVなので、
 静止系で70 MeVのガンマ線を放出。観測者系では陽子のエネル
 ギーを反映

20/43

- 宇宙線陽子(原子核)は星間ガスと衝突し、原子核反応を起こす
 原子核反応なのでガスの状態によらない
- 中性パイ中間子は直ちに光子に崩壊。質量が~140 MeVなので、
 静止系で70 MeVのガンマ線を放出。観測者系では陽子のエネル
 ギーを反映

 陽子 原子核 π^{0} π^{+-} : 2.6×10⁻⁸ s (μ +を介してe⁺⁻) π^{0} : 8.4×10⁻¹⁷ s

- **a**E: $N(E_{\text{proton}})dE_{\text{proton}} \propto E_{\text{proton}} dE_{\text{proton}} \rightarrow E_{\gamma} dE_{\gamma}$
- 低E: E<=200 MeVで(高Eからの延長に対し)cutoff

Hadronic scenario predicts a clear cutoff below 200 MeV

• Spectrum below 200 MeV clearly deviates from bremsstrahlung and agrees well with a hadronic scenario

• Spectrum below 200 MeV clearly deviates from bremsstrahlung and agrees well with a hadronic scenario

Then, what about CR distribution (and propagation)?

• Under the assumption of a uniform CR density, γ rays can be represented by a linear combination of template maps

2015-07_Fermi_CR_ISM.ppt

2015-07_Fermi_CR_ISM.ppt

T. Mizuno et al.

27/43

All-Sky Average local I_{CR}

2015-07_Fermi_CR_ISM.ppt

CR Luminosity Inferred from a Model

• P_{CR} =(6-8)x10⁴⁰ erg/s and L γ =(7-10)x10³⁸ erg/s are inferred by (particular) set of models

Component	Diffusive Reacceleration		
	Model 1	Model 2	Model 3
Cosmic rays (0.1–100 GeV):	805	790	698
Protons	737	724	633
Helium	56	55	48
Leptons	12.2	14.5	16.9
Primary e^-	8.8	11.1	13.4
Secondary e^-	0.78	0.77	0.83
Secondary e^+	2.6	2.6	2.7
γ-rays (0.01–100 MeV):	2.32	3.34	6.22
π^0 -decay	0.24	0.23	0.23
Inverse Compton	1.80	2.81	5.63
Primary e^-	1.31	2.20	4.41
Secondary e^{\pm}	0.49	0.61	1.22
Bremsstrahlung	0.27	0.30	0.36
Primary e^-	0.11	0.15	0.19
Secondary e^{\pm}	0.16	0.15	0.17
γ-rays (0.1–100 GeV):	8.86	9.12	10.3
π^0 -decay	6.75	6.46	6.59
Inverse Compton	1.25	1.76	2.59
Primary e^-	1.15	1.66	2.43
Secondary e^{\pm}	0.10	0.10	0.16
Bremsstrahlung	0.87	0.88	1.08
Primary e^-	0.51	0.58	0.74
Secondary e^{\pm}	0.36	0.30	0.34

T. Mizuno et al.

Gamma-ray Space Telescope

- 導入:星間空間の構成要素,およびガンマ線による宇宙線と星間ガスの探査
- Fermi-LATによる成果1: 比較的よく理解されている事がら
- Fermi-LATによる成果2: まだ良くわかっていないこと, 今後の課題

 Grenier+05 claimed there exist considerable amount of gas not properly traced by radio surveys (H_I by 21 cm, H₂ by 2.6 mm CO) surrounding nearby CO clouds

Confirmation and detailed study by current telescopes are important

- ISM has been mapped by radio surveys (H_I by 21 cm, H₂ by 2.6 mm CO)
- Fermi revealed a component of ISM <u>not measurable</u> by those standard tracers

Chamaeleon Molecular Cloud

Residual γ -rays when fitted by $N(H_I)+W_{CO}$

Ackermann+12, ApJ 755, 22 (CA: Hayashi, TM) T. Mizuno et al.

- ISM has been mapped by radio surveys (H_I by 21 cm, H₂ by 2.6 mm CO)
- Fermi revealed a component of ISM <u>not measurable</u> by those standard tracers, confirming an earlier claim based on EGRET study (Grenier+05)

Residual γ -rays when fitted by $N(H_I)+W_{CO}$

34/43

 Amount of "dark gas" is comparable to or greater than gas mass traced by W_{co}

(Both M_{CO} and $M_{DG} \propto I_{CR} \propto N(H_I)$)

Molecular cloud	Gas mass traced by CO (<i>M</i> _{solar})	"dark gas" (<i>M</i> _{solar})	
Chamaeleon	~5x10 ³	~2.0x10 ⁴	
R CrA	~10 ³	~10 ³	
Cepheus & Polaris	~3.3x10 ⁴	~1.3x10⁴	
See also Abdo	+10 (Ap.T 710 133) Acke	rmann+11 (Ap.T 726 81)	

See also Abdo+10 (ApJ 710, 133), Ackermann+11 (ApJ 726, 81) T. Mizuno et al. T. Mizuno et al.

 No distance ambiguity in velocity separation of gas in outer Galaxy

- No distance ambiguity in velocity separation of gas in outer Galaxy
 - suitable to investigate CRs associated with arms and interarm regions

^{2015-07_Fermi_CR_ISM.ppt} Uncertainty of *I*_{CR} due to H_I Optical Depth

γ-ray emissivity (or I_{CR}) was measured with high precision. But it depends on H_I optical depth assumption

Gamma-ray Space Telescop

- uncertainty by a factor of ~1.5. also affects M_{H_2} , M_{DG}
- cross correlation among γ-rays, radio, IR and optical is crucial (e.g., Planck collaboration 14, Fukui+15)

- CR densities greater than
 expected in outer Galaxy
 - larger propagation halo, more CR sources, non-uniform diffusion, etc.

Abdo+10, ApJ 710, 133 Ackermann+11, ApJ 726, 81 Ackermann+12, A&A 538, A71

41/43

 Intermediate-velocity cloud (IVC) and high-velocity cloud (HVC) allow us to directly measure CR density as a function of distance from the Galactic plane

Tibaldo+15, ApJ 807, 161

 Comparison to galprop diffusion models favors smaller z_{max}, though limitation exists (e.g., boundary condition)

- 天の川銀河の構成要素:星間ガス・光子・磁場・宇宙線
 ガンマ線は星間ガスと宇宙線を探る強力なプローブ
- Fermi-LATによる研究の進展
 - 超新星残骸における陽子加速の証拠
 - 近傍の宇宙線スペクトル
 - 天の川銀河スケールでの宇宙線の理解
- ホットな話題/今後取り組むべき課題
 - ダークガスの正体、存在量
 - 宇宙線強度の不定性(主にHI opacity)
 - 宇宙線ハローおよび伝播モデル

Thank you for your Attention

- ・ 現代の天文学4 「銀河」,現代の天文学6「星間物質と星形成」
- ・ 現代の天文学17「宇宙の観測III」
- Ferrier 2001, Rev. of Mod. Phys. 73, 1031
- Mathewson and Ford 1970, MNRAS 74, 139
- Grenier et al. 2005, Science 307, 1292
- Porter et al. 2008, ApJ 682, 400
- Abdo et al. 2009, ApJ 703, 1249
- Abdo et al. 2010, ApJ 710, 133
- Atwood et al. 2009, ApJ 687, 1071
- Ackermann et al. 2011, ApJ 726, 81
- Ackermann et al. 2012, ApJ 750, 3
- Ackermann et al. 2012, ApJ 755, 22
- Ackermann et al. 2012, ApJ 756, 4
- Ackermann et al. 2012, ApJS 203,
- Ackermann et al. 2012, A&A 538, A71
- Ackermann et al. 2013, Science 339, 807
- Strong et al. 2010, ApJL 722, 58
- Casandjian 2012, AIP Conf Proc. 1505, 37
- Tibaldo et al. 2015, ApJ 807, 161
- Planck collaboration 14, A&A 571, A11
- Fukui et al. 2014, ApJ 796, 59; Fukui et al. 2015, ApJ 798, 6

2015-07_Fermi_CR_ISM.ppt

Backup Slides

T. Mizuno et al.

45/43

γ -rays \propto CRs x ISM (or ISRF)

A powerful probe to study CRs (and ISM) in distant locations

- 相対論的エネルギーに加速さ (れた高エネルギー粒子の総称 [°]
- 10²⁰ eVまで伸びるベキ関数
- ・ 陽子(核子)が主成分
 - 0.1-1%の電子と陽電子
 - 陽子のベキは~2.7、電子は~3
- kneeおよびankleと呼ばれる 折れ曲がりが存在
 - 加速源や、閉じ込めの情報を
 反映
- 異方性が小さく,星間磁場に より繰り返し散乱を受けている と考えられる(拡散運動)

- 超新星の爆風が星間物質中
 に衝撃波を作る
- 荷電粒子の一部は周りの
 電磁流体乱流で繰り返し
 散乱され、エネルギーを得る
 (Fermiの統計加速)
- E⁻²を予言し、宇宙線加速とし て都合がよい

- Nは的となるガスの密度, Zは原子番号
- <u>g</u>~1 (電子のエネルギーや電離状態に弱く依存)
- r_eは古典電子半径、α=1/137は微細構造定数
- 制動放射によるエネルギー損失は、エネルギーに比例

- 中程度のエネルギーを持った電子のエネルギー損失および放射

$$-\frac{1}{E}\left(\frac{dE}{dt}\right)_{bremss} = 4NZ^2 r_e^2 \alpha c \overline{g}$$

$$\boxed{\begin{array}{c} \mathbf{a} \mathbf{F} \\ \mathbf$$

$$N(E_e)dE_e \propto E_e^{-p}dE_e \rightarrow E_{\gamma}^{-p}dE_{\gamma}$$

- ・ 反応相手は星間磁場・光子
- σ_Tはトムソン散乱の断面積
- エネルギー損失はエネルギーの二乗に比例

- 高エネルギー電子のエネルギー損失および放射

- 反応相手は星間磁場
- σ_Tはトムソン散乱の断面積
- エネルギー損失はエネルギーの二乗に比例
- ・ 強度が最大となる周波数はγ²に比例する。数字を入れると

 $v_{\text{max}} = 0.12(\gamma/10^4)^2 (B/1 \text{uG})(\sin \alpha) [\text{GHz}]$ したがって星間空間のGeV電子は、~1 GHzの電波を出す。

- 反応相手は星間光子
- ・ σ_Tはトムソン散乱の断面積
- ・ エネルギーの二乗に比例
- ・ 平均すると、元の光子のエネルギーの~γ²倍になるので、1 GeVの電子に対し
 - CMB (~1 meV) -> 4 keVつまりX線
 - 可視光(~1 eV) -> 4 MeVつまりガンマ線

$$-\left(\frac{dE}{dt}\right)_{\rm IC} = \frac{4}{3}\sigma_{\rm T}c\gamma^2 U_{\rm rad}$$
$$\overline{E_{\rm IC}} = \frac{4}{3}\gamma^2 E_0$$

 Fukui+12 claimed there exist considerable amount of "dark H_I" in RX J1713.7-3946 by comparing H_I, CO and

2015-07_Fermi_CR_ISM.ppt Extragalactic Gamma-ray Background (EGB)

1. ΙΝΠΖUΠΟ σι αι.

Space Telescope

⁽taken from M. Ackermann's talk)

 Study of extragalactic γ-ray background (EGB) shows not only gas component (CR-p) but also IC (CR-e) is not fully understood yet

An alternative foreground model

Gamma-ray Space Telescope

> Model B: an additional population of electron-only sources located near the Galactic center (just as an example to better represent measured IC)

- Fermi = LAT + GBM
- LAT = GeV Gamma-ray Space Telescope (20 MeV ~>300 GeV; All-Sky Survey)

(GC-emphasized observation started in 2013 Dec.)

Cape Canaveral, Florida T. Mizuno et al.

1873 sources Nolan+ 2012, ApJS 199, 31 57/43

γ -rays = CRs x ISM (or ISRF)

A powerful probe to study CRs and ISM

Pro: optically-thin, "direct" tracer of all gas phases Con: low-statistics, contamination (isotropic, IC), depend on CR density T. Mizuno et al.

• "local" CR densities among regions agree by a factor of 1.5, within systematic uncertainty (mostly due to the assumption of T_s)

2015-07_Fermi_CR_ISM.ppt The Cygnus Region (MILAGRO)

- Very rich region of massive-star formation at 1.4 kpc
- Two sources + diffuse emission at TeV (MILAGRO)
 - correlation with matter density

Gamma-ray Space Telescope

diffuse flux exceeds the prediction by local CR (solid line)

- Very rich region of massive-star formation at 1.4 kpc
- Detailed study by Fermi-LAT
 - with known sources and diffuse gammas subtracted, extended hard (>10 GeV) excess revealed in OB2 association

2015-07_Fermi_CR_ISM.ppt γ-ray Excess in the Cygnus Region

- γ-ray excess fills the cavities carved by stellar winds and ionization fronts
 - likely interstellar origin rather than multiple sources

62/43

- CRs with local spectrum are too weak or too soft
- Hard, freshly accelerated CRs are required
 Hadronic

 Uncertainty of the Physics Model affects the γ-ray emissivity, or I_{CR}, at 10-20% level

Dermer12, PRL 109, 091101

- Large scatter of dust-W_{HI} relation has been recognized recently. Whether this is due to (1) optically-thick H_I, or (2) non-uniform dust property, is under debate. (e.g., Fukui+14, Planck Collaboration 2013)
- Correlation with γ-ray is important to settle the issue

65/43